

Advanced Nanoporous Composite Materials for Industrial Heating Applications

Towards Low-Cost Nanostructured Refractory Materials

Arlon J. Hunt, LBNL Siu-Chun Lee, ASL

E.O. Lawrence Berkeley National Laboratory

Applied Sciences Laboratory

DOE-IMF Annual Program Review June 23, 2004

OUTLINE

- Programmatic Issues
- Technical Approach
- Progress in Material fabrication
- Thermal Testing results (Siu-Chun, ASL)
- Future Plans and Commercialization

Advanced Nanoporous Composite Materials for Industrial Heating Applications

Goal: Develop superior insulating and refractory materials for high temperature IPH applications.

Challenge: Fabricate new nanoporous materials using aerogel technology for improved cost/benefit.

Benefits: Reduced energy consumption by industrial furnaces and heat treatment equipment.

FY05 Activities: Process scale up, testing, and design - transfer technology.

Participants: Lawrence Berkeley National Laboratory, Applied Sciences Laboratory, insulation/refractory manufacturer.

Advanced Nanoporous Composite Materials for Industrial Heating Applications

Barriers:

- Lack of low cost/high performance IPH thermal insulation material.
- Scale-up nanostructured materials to commercial sized blocks.
- Difficulty of high temperature conductivity measurements.

Pathways:

- Develop nanostructured insulating materials.
- Find inexpensive sol-gel process using bulk chemicals
- Produce powdered material and reform into blocks.
- Increase strength of reformed blocks using fibers.

Metrics:

Produce material with lower cost/R-value than existing insulation.
 Estimated energy savings 100 trillion BTU; cost savings \$750
 Million.

Sol-gel Processing for Nanostructured Materials

Combine Chemicals

Allow solution to gel

Supercritical Drying of powder

Heat processing

Pressing & reheating

All five processes must be optimized

- * For properties
- * For Scale-up

Challenges for High Temperature Applications

- Must withstand temperatures of 700-1500 °C
 - Increase sintering resistance
- Must be chemically inert
- Must show reduced thermal conductivity
 - Target: 0.01-0.10 W/m-K
 - Block solid, gaseous, and Radiative heat transfer modes
- Must be affordable
 - Target: \$5-20 per board foot

Production Issues

- Many types of aerogels require lengthy synthesis, aging, and drying times
- Early Al₂O₃/ Cr₂O₃ aerogel preparations required 1-2 weeks of processing
 - Rapid gel time achievable with carefully controlled water content
 - Lengthy soaking time eliminated due to lower water content
 - Rapid supercritical drying practical for powdered aerogel production
- Total process time now reduced to ~1-2 days

Sol-Gel Synthesis Issues

- Large batches (~5 liter) require increased care to yield acceptable product
 - exothermic reaction requires good thermal control with large batches
 - Gel time varies considerably (up to 5,000X) with reactant concentrations
- Water content of sol found to be key to controlling gel time
 - low water gives precipitates, high water yields gel times >1 week

Prototype Block Preparation

- Various forming and firing processes evaluated to determine suitability for large-scale production
 - Wet-casting gave the best results
 - pure water adequate to cast various shapes
 - addition of binders was not necessary and has not provided significant added strength
 - · minimal shrinkage or cracking
- 6 x 6 x 0.5" panel prepared for thermal testing
 - wet-cast into a stainless steel mold and fired at 1000 °C
- Composite structures using fibers should improve strength and durability
- Composition with fastest process leads to strongest blocks

Efforts identified best Composition and process

Thermal properties

Compound	Neat aerogel	450 °C	1000 °C
Cr ₂ O ₃	290	13	13
$Al_2O_3 \cdot 2Cr_2O_3$	270	180	41
$Al_2O_3 \cdot Cr_2O_3$	260	160	44
$2Al_2O_3 \cdot Cr_2O_3$	240	170	64
2(0.94Al ₂ O ₃ ·0.06SO ₂)·Cr ₂ O ₃	350		130

Material Costs

Item	Cost/board foot (\$)
Aluminum trihydroxide	0.23
CrO ₃	1.36
Tetraethylorthosilicate	0.54
Al ₂ O ₃ particulate opacifant	0.21
Total	\$2.34

Electron Micrograph of Al2O3/ Cr2O3 /Si2O3

Alternative Chemistry Explored

- Other alternative compositions and processes examined include:
 - sol-gel syntheses using metal salts and epoxides (A. Gash, et al., ISA 6,7)
 - Additional redox-type reactions using various metal combinations
 - Sonochemical syntheses in liquid CO₂of materials such as Boron Nitride
- None have matched the combination of physical properties and low cost shown by the Al₂O₃/ Cr₂O₃ aerogel powders

Thermal Performance

ASL

Thermal Testing

- Equipment description
- Thermal conductivity results
- Comparisons with competitive materials
- Future Improvement
 - Performance enhancement by addition of fibers
 - Selection of fiber type and density will utilize validated analytical model

Heat Transfer Apparatus

ASL

- 24" ID x 32"H stainless steel
- Ambient to 1E-7 torr

Heat meter apparatus:

- 300 to 1300K
- k: 0.005 to 1 W/m-K, ±10% uncertainty
- Specimen size: 15x15x2.5cm

Inconel Plates

Test Specimen

No apparent shrinkage due to testing from 400 to 900K.

- Tests initially in vacuum,
 followed by GN₂ at
 atmospheric pressure
- Pre-test specimen shows similar crack pattern.
- Cracking increased due to handling.

Specimen (post test)

15x15x1.05cm 888 kg/m^3

Measurements on Al₂O₃-Cr₂O₃ Aerogel ASL

Comparison with Competitive MaterialasL

Comparison with LI900 Shuttle Tile Material SL

Performance Enhancement by Fibers

- ASL theoretical formalisms accurately predict heat transfer through composites of fibers and particulates.
 - Model has been validated by experimental data on various fiber composites, including fiber-filled aerogels
- Analytical tool will be used to achieve desired thermal performance by tailoring the material composition:
 - Material, diameter distribution, density, and orientation (fibers only) of fibers and particulates

Future Plans

• FY 05 goals:

- Continue scale up activities
- Improve strength and handle-ability by adding long fibers (alumina)
- Optimize thermal performance by utilizing Applied Sciences Laboratory analytical design capability
 - Tailor the composition by optimal selection of density, fiber type, and fiber sizes
 - Facing treatments
- Validate thermal performance by heat transfer measurements
- Technology transfer to refractory/insulation manufacture

